首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2133篇
  免费   316篇
  国内免费   131篇
测绘学   36篇
大气科学   53篇
地球物理   536篇
地质学   1658篇
海洋学   23篇
天文学   4篇
综合类   58篇
自然地理   212篇
  2023年   5篇
  2022年   33篇
  2021年   42篇
  2020年   51篇
  2019年   57篇
  2018年   37篇
  2017年   56篇
  2016年   78篇
  2015年   80篇
  2014年   104篇
  2013年   115篇
  2012年   74篇
  2011年   86篇
  2010年   87篇
  2009年   171篇
  2008年   221篇
  2007年   197篇
  2006年   209篇
  2005年   138篇
  2004年   135篇
  2003年   81篇
  2002年   79篇
  2001年   63篇
  2000年   52篇
  1999年   45篇
  1998年   45篇
  1997年   47篇
  1996年   35篇
  1995年   43篇
  1994年   32篇
  1993年   26篇
  1992年   17篇
  1991年   2篇
  1990年   5篇
  1989年   5篇
  1988年   7篇
  1987年   3篇
  1986年   3篇
  1985年   4篇
  1984年   7篇
  1982年   1篇
  1980年   1篇
  1954年   1篇
排序方式: 共有2580条查询结果,搜索用时 61 毫秒
981.
为了揭示焉耆县良种场的土壤水热盐动态变化,对有膜覆盖和无膜覆盖条件下各土壤层进行水热盐的系统观测和单因素方差分析及相关性分析。结果表明:(1)土壤温度的日变化呈现先降低后升高再降低的趋势,有膜各层土壤温度高于相对应的无膜各层土壤温度,各层土壤温度和大气温度变化趋势一致。(2)有膜各层土壤盐分要高于相对应的无膜各层土壤盐分,表层土壤水分小于底层,有膜10~20 cm土壤水分含量比较低,无膜10~50 cm土壤水含量比较接近;滴灌后,土壤水分和盐分经历快速下降和缓慢下降两个过程。由于文献对于有膜覆盖与无膜覆盖条件下土壤水热盐变化的研究相对较少,文章通过研究焉耆县农田生育期有膜和无膜条件下土壤水热盐的变化特征,为研究区土壤盐渍化的防治提供科学依据。  相似文献   
982.
膜下滴灌棉花根系发育特征及其与土壤水盐分布的关系   总被引:4,自引:0,他引:4  
为探讨膜下滴灌条件下水分和盐分对棉花根系空间发育的影响,在花铃期选择相同灌溉制度、咸淡水灌溉的两个膜下滴灌处理田块采集距滴灌带不同距离、不同深度上的根系样品144 件。用1 mm 土筛和手拣将棉花根系从土壤中筛分出来,去除死根,冲洗干净后用扫描仪扫描成tif 格式图像,再用DT-SCAN 软件计算根长密度。对比分析发现膜下滴灌及盐胁迫条件下,咸水灌溉的根系分布范围较大,其总根长密度比淡水大31.69 mm/cm3,根系生长深度也远大于淡水灌溉。咸水灌溉根系分布主要受盐分胁迫,淡水灌溉根系分布主要受水分胁迫。水平方向上距滴头40 cm以远,水分胁迫对根系发育起主导作用。土壤体积含水率在20% 以上、电导率在2 000 μs/cm 以下时可以满足根系的正常生长发育。  相似文献   
983.
The three-dimensional groundwater flow patterns in a gravel bar at the Danube east of Vienna were investigated and are discussed in this paper. The observed groundwater level gradients are highly dynamic and respond very quickly to changes in the river water levels. A variably saturated groundwater model was calibrated to the data to describe the complex dynamics of flow in the gravel bar. The model results suggest that short-term (6–48 h) fluctuations of river water levels cause variations in the exchange flow rates from − 35 l/s to 82 l/s. The highest rates occur during brief infiltration after rapidly rising river water levels. Simulations of different scenarios indicate that riverbank clogging will decrease the exchange fluxes by up to 80%, while clogging of both riverbank and riverbed essentially stops the flow exchange. The groundwater model is also used to simulate the transport of a conservative tracer. The variation of river water levels over time is shown to increase the extent of the active river–aquifer mixing zone in the gravel bar. These dynamic factors significantly enhance the dilution of conservative tracer concentrations in this zone.  相似文献   
984.
Simulation of biodegradation of chlorinated solvents in dense non-aqueous phase liquid (DNAPL) source zones requires a model that accounts for the complexity of processes involved and that is consistent with available laboratory studies. This paper describes such a comprehensive modeling framework that includes microbially mediated degradation processes, microbial population growth and decay, geochemical reactions, as well as interphase mass transfer processes such as DNAPL dissolution, gas formation and mineral precipitation/dissolution. All these processes can be in equilibrium or kinetically controlled. A batch modeling example was presented where the degradation of trichloroethene (TCE) and its byproducts and concomitant reactions (e.g., electron donor fermentation, sulfate reduction, pH buffering by calcite dissolution) were simulated. Local and global sensitivity analysis techniques were applied to delineate the dominant model parameters and processes. Sensitivity analysis indicated that accurate values for parameters related to dichloroethene (DCE) and vinyl chloride (VC) degradation (i.e., DCE and VC maximum utilization rates, yield due to DCE utilization, decay rate for DCE/VC dechlorinators) are important for prediction of the overall dechlorination time. These parameters influence the maximum growth rate of the DCE and VC dechlorinating microorganisms and, thus, the time required for a small initial population to reach a sufficient concentration to significantly affect the overall rate of dechlorination. Self-inhibition of chlorinated ethenes at high concentrations and natural buffering provided by the sediment were also shown to significantly influence the dechlorination time. Furthermore, the analysis indicated that the rates of the competing, nonchlorinated electron-accepting processes relative to the dechlorination kinetics also affect the overall dechlorination time. Results demonstrated that the model developed is a flexible research tool that is able to provide valuable insight into the fundamental processes and their complex interactions during bioremediation of chlorinated ethenes in DNAPL source zones.  相似文献   
985.
Problems in hydrology and water management that involve both surface water and groundwater are best addressed with simulation models that can represent the interactions between these two flow regimes. In the current generation of coupled models, a variety of approaches is used to resolve surface–subsurface interactions and other key processes such as surface flow propagation. In this study we compare two physics-based numerical models that use a 3D Richards equation representation of subsurface flow. In one model, surface flow is represented by a fully 2D kinematic approximation to the Saint–Venant equations with a sheet flow conceptualization. In the second model, surface routing is performed via a quasi-2D diffusive formulation and surface runoff follows a rill flow conceptualization. The coupling between the land surface and the subsurface is handled via an explicit exchange term resolved by continuity principles in the first model (a fully-coupled approach) and by special treatment of atmospheric boundary conditions in the second (a sequential approach). Despite the significant differences in formulation between the two models, we found them to be in good agreement for the simulation experiments conducted. In these numerical tests, on a sloping plane and a tilted V-catchment, we examined saturation excess and infiltration excess runoff production under homogeneous and heterogeneous conditions, the dynamics of the return flow process, the differences in hydrologic response under rill flow and sheet flow parameterizations, and the effects of factors such as grid discretization, time step size, and slope angle. Low sensitivity to vertical discretization and time step size was found for the two models under saturation excess and homogeneous conditions. Larger sensitivity and differences in response were observed under infiltration excess and heterogeneous conditions, due to the different coupling approaches and spatial discretization schemes used in the two models. For these cases, the sensitivity to vertical and temporal resolution was greatest for processes such as reinfiltration and ponding, although the differences between the hydrographs of the two models decreased as mesh and step size were progressively refined. In return flow behavior, the models are in general agreement, with the largest discrepancies, during the recession phase, attributable to the different parameterizations of diffusion in the surface water propagation schemes. Our results also show that under equivalent parameterizations, the rill and sheet flow conceptualizations used in the two models produce very similar responses in terms of hydrograph shape and flow depth distribution.  相似文献   
986.
Despite the presence of gas in river beds being a well known phenomenon, its potential feedbacks on the hydraulic and thermal dynamics of the hyporheic zone has not been widely studied. This paper explores hypotheses that the presence of accumulated gas impacts the hydraulic and thermal dynamics of a river bed due to changes in specific storage, hydraulic conductivity, effective porosity, and thermal diffusivity. The hypotheses are tested using data analysis and modelling for a study site on the urban River Tame, Birmingham, UK. Gas, predominantly attributed to microbial denitrification, was observed in the river bed up to around 14% by volume, and to at least 0.8 m depth below river bed. Numerical modelling indicates that, by altering the relative hydraulic conductivity distribution, the gas in the river bed leads to an increase of groundwater discharge from the river banks (relative to river bed) by a factor of approximately 2 during river low flow periods. The increased compressible storage of the gas phase in the river bed leads to an increase in the simulated volume of river water invading the river bed within the centre of the channel during storm events. The exchange volume can be more than 30% greater in comparison to that for water saturated conditions. Furthermore, the presence of gas also reduces the water-filled porosity, and so the possible depth of such invading flows may also increase markedly, by more than a factor of 2 in the observed case. Observed diurnal temperature variations within the gaseous river bed at 0.1 and 0.5 m depth are, respectively, around 1.5 and 6 times larger than those predicted for saturated sediments. Annual temperature fluctuations are seen to be enhanced by around 4 to 20% compared to literature values for saturated sediments. The presence of gas may thus alter the bulk thermal properties to such a degree that the use of heat tracer techniques becomes subject to a much greater degree of uncertainty. Although the likely magnitude of thermal and hydraulic changes due to the presence of gas for this site have been demonstrated, further research is needed into the origins of the gas and its spatial and temporal variability to enable quantification of the significance of these changes for chemical attenuation and hyporheic zone biology.  相似文献   
987.
台塬塬顶裂缝对黄土斜坡水文响应的影响   总被引:1,自引:0,他引:1  
针对黑方台黄土滑坡,从现场灌溉试验监测数据和数值模拟分析着手,研究灌溉过程中台塬斜坡的水文响应以及对黄土斜坡稳定性的影响。结果表明:短期的灌溉并不能对地下水位形成有效的补给,但是却容易引起斜坡浅部范围内体积含水量增加,从而使得抗剪强度降低,最终在台缘顶部发生滑塌,台塬顶部裂缝的存在会使得浅部体积含水量增加速度加快,加速土体弱化,更易发生台塬顶部的滑塌;从长期灌溉模拟来看,裂缝的存在会加速地下水位的上升。从数据上论证了黄土斜坡受裂缝的影响特性,为研究黄土滑坡与地表水入渗的关系提供数据参考。此外,数值模拟与监测数据有很好的对应关系,用其模拟灌溉引起的斜坡水文响应是可行的。  相似文献   
988.
Inverse modeling is widely used to assist with forecasting problems in the subsurface. However, full inverse modeling can be time-consuming requiring iteration over a high dimensional parameter space with computationally expensive forward models and complex spatial priors. In this paper, we investigate a prediction-focused approach (PFA) that aims at building a statistical relationship between data variables and forecast variables, avoiding the inversion of model parameters altogether. The statistical relationship is built by first applying the forward model related to the data variables and the forward model related to the prediction variables on a limited set of spatial prior models realizations, typically generated through geostatistical methods. The relationship observed between data and prediction is highly non-linear for many forecasting problems in the subsurface. In this paper we propose a Canonical Functional Component Analysis (CFCA) to map the data and forecast variables into a low-dimensional space where, if successful, the relationship is linear. CFCA consists of (1) functional principal component analysis (FPCA) for dimension reduction of time-series data and (2) canonical correlation analysis (CCA); the latter aiming to establish a linear relationship between data and forecast components. If such mapping is successful, then we illustrate with several cases that (1) simple regression techniques with a multi-Gaussian framework can be used to directly quantify uncertainty on the forecast without any model inversion and that (2) such uncertainty is a good approximation of uncertainty obtained from full posterior sampling with rejection sampling.  相似文献   
989.
通过对《中国震例》中所辑宏观异常的统计分析认为,随着震级的增大,震前出现宏观异常的概率逐步增大,震级大的地震震前宏观异常数量也相对较多。宏观异常大多数为短期和临震异常,多数发生在距震中100km的范围内。在时间上,宏观异常开始时数量较少;随着时间的推进,异常不断增多;越近临震,异常数量越多,直到发震达到高潮。在地域上则表现出始于震中、然后向外围发展、最后震中爆发式增多的特点。  相似文献   
990.
蔡作馨 《中国地震》2015,31(1):165-167
在地应力连续测量方法"渗透率法"的基础上,设计了一种对观测系统进行标定的方法。经对原有推导结果进行数学转换,给出了新的计算公式以及其中有关参数的测定方法。结果表明,经过标定之后,原有的连续相对测量方法可转换为抗干扰性强、灵敏度高、经济简便且物理意义确切的有效正应力连续测量方法。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号